

Elettra Sincrotrone Trieste

Scanning photoemission imaging and spectro-microscopy: a direct approach to spatially resolved XPS

Matteo Amati, Hikmet Sezen and Luca Gregoratti

matteo.amati@elettra.eu

EWinS 2016, 1 – 11 February, Ajdovščina, Slovenia

Photoelectron Spectroscopy – Material & Pressure Gaps

XPS = X-ray Photoelectron Spectroscopy

ESCA = Electron Spectroscopy for Chemical Analysis

```
BE = hv - KE - \Phi_s
```


Photoemission spectromicroscopy

https://www.elettra.eu/elettra-beamlines/escamicroscopy.html

Scanning PhotoElectron Microscopy (SPEM)

Avarage informations from ALL the illuminated part of the sample

SMALL X-ray PROBE Move the X-ray

PROBE across the sample

Spatial resolution

Smaller is the probe higher is the spatial resolution

https://www.elettra.eu/elettra-beamlines/escamicroscopy.html

Synchrotron beam focusing

Synchrotron beam \rightarrow Partially coherent

https://www.elettra.eu/elettra-beamlines/escamicroscopy.html

ESCAmicroscopy - SPEM optics

https://www.elettra.eu/elettra-beamlines/escamicroscopy.html

ESCAmicroscopy – SPEM sample stage

https://www.elettra.eu/elettra-beamlines/escamicroscopy.html

ESCAmicroscopy – Scanning PhotoElectron Microscopy (SPEM)

https://www.elettra.eu/elettra-beamlines/escamicroscopy.html

SPEM layout and performance

SPEM actual performances

https://www.elettra.trieste.it/elettra-beamlines/escamicroscopy.html

Matteo Amati | 10

Hemispherical

SPEM experiments: main topics

Nanostructures/devices characterization

- MCNTs mass transport and reactivity
- e-noses
- Size dependent electronic properties of semiconductors
- Growth mechanism

Electrochemistry/SOFC

- Electrochemical stability of materials
- Corrosion
- Mass Transport

Nanocomposite materials

- Sample preparation
- Ageing

Catalysis

- 'Material' gap: from model single-crystal metal catalysts to supported metal nano-particles.
- In situ PLD particle deposition

Indium Zinc Oxide Pyramids with Pinholes and Nanopipes (in collaboration with A. Cremades – Uni

Complutense Madrid – Spain)

Micropyramids of zinc-doped indium oxide grown by thermal treatments of compacted InN and ZnO powders at temperatures between 700 and 900 C under argon flow.

SPEM reveals the heterogeneous distribution of In and Zn

16 µm

Javier Bartolomé et al., J. Phys. Chem. C, 2011, 115 (16), pp 8354–8360

Gas phase oxidation of MCNT

A. Barinov et al. Adv. Mat. 21 (19) 1 (2009)

Matteo Amati | 13

Doping by nitrogen ion implantation of suspended graphene flakes

(a) (b) 12 5' N total 10 (% concentration (at. 15' N, Intensity (arb. units) RI 6 Nitrogen (250°0 430°C 395 5' N2* 15' N,* 250°C 405 400 430° Binding Energy (eV) RT

Control of nitrogen component by heating the sample to mid-temperatures (430°C)

Difference between supported and suspended graphene (role of the substrate) (Supported: unwanted disorder due to recoil and backscattering)

M. Scardamaglia et al., Carbon 73, 371 (2014)

SOFC operating under working condition

collaborations:

M. Backhaus - Corning Inc. (USA)

- B. Luerssen University of Giessen (Germany)
- B. Bozzini Università del Salento, Lecce (Italy)

Bocchetta et al. ACS Appl. Mater. Interfaces. 6 (2014) 19621– 19629

Bozzini et all. Electrochem Comm, Vol. 24, pp.104-107 (2012) Bozzini et all. ChemSusChem, Vol. 4 - 8, pp. 1099-1103 (2011) Backhaus et al. Advances in Solid Oxide Fuel Cells III 28 (4), 2007.

Backhaus et al. Solid State Ionics 179 (2008) 891–895 , M. Valov et al. *Phys. Chem. Chem. Phys.*, 2011, 13, 3394-3410 Ecc...

Strongly constraining experimental setup

Real samples
High T = 650-700°C
P=1x10⁻⁶ mbar
Applied potentials

-2V<U<+2V

Surface sensitive technique
High lateral resolution

ESCAmicroscopy – electrochemical SPEM characterizzation

Catalyst stability in acidic solution under oxygen reduction

Pyrolized Co/PPy on Graphite

Aging: Voltammetric cycle in O₂-saturated 0.5M H₂SO₄

Bocchetta et al. ACS Appl. Mater. Interfaces. 6 (2014) 19621–19629

ESCAmicroscopy – electrochemical SPEM characterizzation

(a)

Bocchetta et al. ACS Appl. Mater. Interfaces. 6 (2014) 19621–19629

ESCAmicroscopy – Self Driven Single Chamber SOFC *In operando* condition

B. Bozzini et al. Scientific Report 3, 2848, 2013

ESCAmicroscopy – Self Driven Single Chamber SOFC *In operando* condition

self-driven activity of electrochemical cell starts

Chemical reduction Ni²⁺+H₂→Ni+2H⁺

ESCAmicroscopy – Self Driven Single Chamber SOFC *In operando* condition

Simultaneously mapping the local chemical state and the local electrochemical activities

Near ambient pressure XPS

- short mean free path of electrons in a gas phase
- High voltage components to detect the single electron

Confine the high pressure at the sample

State of the art approach:

Electron analyzers coupled with sophisticated differentially pumped lenses

Ambient pressure SPEM: • X-ray optics • Sample Stage • Differentially pumped analyzer • Challenging technical solutions

Environmental cell using graphene oxide windows

(in collaboration with A. Kolmakov – Souther Illinois Uni. - USA)

Graphene oxide windows for *in situ* environmental cell photoelectron spectroscopy

Andrei Kolmakov^{1*}, Dmitriy A. Dikin², Laura J. Cote², Jiaxing Huang², Majid Kazemian Abyaneh³, Matteo Amati³, Luca Gregoratti³, Sebastian Günther⁴ and Maya Kiskinova³

- low-cost, single-use environmental cells
- compatible with XPS and Auger instruments

A.Kolmakov et al. Nature Nanotechnology 6, 651–657 (2011) J.Kraus et al. Nanoscale, 2014, 6, 14394

Environmental cell using graphene oxide windows

(in collaboration with A. Kolmakov – Souther Illinois Uni. - USA)

A.Kolmakov et al. Nature Nanotechnology 6, 651–657 (2011) J.Kraus et al. Nanoscale, 2014, 6, 14394

Dynamic high pressure XPS

Pulsed supersonic beam

High freq pulsed dosing valve + nozzle
UHV compatible system
Low cost
Compact design
Can be used in any SPEM/XPS/Auger system

 $t_{AP} \sim 3 \text{ ms}$ $f_{AP} = 350 \text{ mHz}$ $P_{valve} = 3.5 \text{ bar}$

M Amati et al. Journal of Instrumentation, Vol. 8 - 05, pp. T05001 (2013)

Dynamic high pressure XPS

Si oxidation (530°C) STATIC <-> Dynamic HP comparison

Elettra

Sincrotrone Trieste

Equivalent Static Pressure 10⁻³ - 10⁻² mbar

Single Shot MAX pressure ~ 10 mbar

M Amati et al. Journal of Instrumentation, Vol. 8 - 05, pp. T05001 (2013) Doh et al. ChemElectroChem Vol. 1 - 1, pp. 180-186 (2014)

Radiation Damage

PEDOT – PSS film

- Conventional XPS and OSA spectra are similar
- Even the faster map show damage

Thank you!

www.elettra.eu