#### **Topics**

- Interaction of X-rays with matter
- Overview of core level spectroscopies
- XAS analysis of spectral features
- Interpretation of X-ray absorption

#### Why are X-Rays so Useful ?

#### Why are X-Rays so Useful ?

#### Imaging - Seeing the Invisible

Atomic and Molecular Structure

- where are the atoms -

 1895
 1993



#### Electronic Structure and Bonding - where are the electrons -

#### Magnetic Structure and Properties - where are the spins-





The photon moves towards the atom



The photon meets an electron and is annihilated



## The electron gains the energy of the photon and is turned into a **blue electron**.



Beyond the one-electron model: von Almbladh and Hedin, Handbook of synchrotron radiation 1, chapter 8, pages 607-900 (1983)

The blue electron (feeling lonely) leaves the atom and scatters of neighbors or escapes from the sample



The probability of photon annihilation determines the intensity of the transmitted photon beam



# Overview of core level spectroscopies

#### **Ground State**

-

|          | Mn 4p        |
|----------|--------------|
|          | <u>Mn 3d</u> |
|          | <u>O 2p</u>  |
|          | <u>O 2s</u>  |
|          |              |
|          | <u>Mn 3p</u> |
| -        | Mn 3s        |
|          | O 1s 5       |
|          | Mn 2p        |
| <b>—</b> | Mn 2s        |
|          | Mn 1s 68     |
|          |              |

MnO 3d<sup>5</sup>

#### **Ground State**

| Mn 4p        | -  |
|--------------|----|
| <u>Mn 3d</u> | 0  |
| <u>O 2p</u>  | 5  |
| <u>O 2s</u>  | 20 |
| <u>Mn 3p</u> | 45 |

#### **X-ray absorption**

| 9 |
|---|

| Mn 4p |  |
|-------|--|
|       |  |

-

<u>Mn 3d</u> 0 <u>O 2p</u> 5

<u>0 2s</u> 20

<u>Mn 3p</u> 45

#### X-ray absorption





#### **X-ray absorption**



The life of a core hole is rather short: ~few femtoseconds

#### X-ray emission after x-ray absorption











#### XAS and XPS





#### X-ray emission decay



Auger electron decay







## **Binding Energies**

X-ray absorption edges

#### **Manganese Electron binding energies**

|        | Label            | Orbital                      | eV [literature reference] |
|--------|------------------|------------------------------|---------------------------|
| view 🕍 | K                | <u>1s</u>                    | 6539 [1]                  |
| view 🕍 | LI               | <u>2s</u>                    | 769.1 [3]                 |
| view 🚣 | L <sub>II</sub>  | <u>2p<sub>1/2</sub></u>      | 649.9 [3]                 |
| view 🕍 | L <sub>III</sub> | <u>2p</u> <sub>3/2</sub>     | 638.7 [3]                 |
| view 🕍 | M <sub>I</sub>   | <u>3s</u>                    | 82.3 [3]                  |
| view 🚣 | M <sub>II</sub>  | <u><math>3p_{1/2}</math></u> | 47.2 [3]                  |
| view 🚣 | M <sub>III</sub> | $3p_{3/2}$                   | 47.2 [3]                  |

http://www.webelements.com/

#### Atomic binding energies in hydrogen



#### Atomic binding energies in oxygen



#### Atomic binding energies in oxygen



#### **Atomic binding energies**

... simple laws have been found which [...] make it possible to predict with confidence the position of the principal lines in the spectrum of any element from aluminum to gold.





Adapted from Moseley's original data (H. G. J. Moseley, Philos. Mag. (6) 27:703, 1914)

X-ray absorption edges

#### **Manganese Electron binding energies**

|        | Label            | Orbital                      | eV [literature reference] |
|--------|------------------|------------------------------|---------------------------|
| view 🕍 | K                | <u>1s</u>                    | 6539 [1]                  |
| view 🕍 | LI               | <u>2s</u>                    | 769.1 [3]                 |
| view 🚣 | L <sub>II</sub>  | <u>2p<sub>1/2</sub></u>      | 649.9 [3]                 |
| view 🕍 | L <sub>III</sub> | <u>2p</u> <sub>3/2</sub>     | 638.7 [3]                 |
| view 🕍 | M <sub>I</sub>   | <u>3s</u>                    | 82.3 [3]                  |
| view 🚣 | M <sub>II</sub>  | <u><math>3p_{1/2}</math></u> | 47.2 [3]                  |
| view 🖌 | M <sub>III</sub> | $3p_{3/2}$                   | 47.2 [3]                  |

http://www.webelements.com/

### **Qualitative XAS analysis**

#### X-ray absorption: XANES and EXAFS



#### **XANES: qualitative analysis**



Edge position gives valence

#### **XANES: qualitative analysis**



#### **XANES: qualitative analysis**



Edge position gives valence Pre-edge gives valence

**Different slopes**
#### **XANES: qualitative analysis**



Pre-edge intensity gives site symmetry

#### **XANES: qualitative analysis**



Ledge of 4d-systems > number of empty 4d states

#### **XANES: qualitative analysis**



Ledge of 5d-systems > number of empty 5d states

Difference between metal and oxide

## **Quantitative XAS interpretation**

#### X-ray absorption

Excitation of core electrons to empty states.

Spectrum given by the Fermi Golden Rule (name Golden Rule given by Fermi; rule itself given by Dirac)

$$I_{X\!A\!S} \sim \Sigma_f \left| \left\langle \Phi_f \left| \hat{e} \cdot r \right| \Phi_i \right\rangle \right|^2 \delta_{E_f - E_i - \hbar \omega}$$

#### X-ray Absorption Spectroscopy



X-ray Absorption Spectroscopy



**Electronic Structure; TiO<sub>2</sub>** 



#### **Electronic Structure:** TIO<sub>2</sub>



#### X-ray absorption: core hole effect



**Final State Rule:** Spectral shape of XAS looks like final state DOS

Initial State Rule: Intensity of XAS is given by the initial state

#### X-ray absorption

Excitation of core electrons to empty states.

Spectrum given by the Fermi Golden Rule (name Golden Rule given by Fermi; rule itself given by Dirac)

$$I_{X\!A\!S} \sim \Sigma_f \left| \left\langle \Phi_f \left| \hat{e} \cdot r \right| \Phi_i \right\rangle \right|^2 \delta_{E_f - E_i - \hbar \omega}$$

X-ray absorption

Fermi Golden Rule:  $I_{XAS} = |\langle \Phi_f | dipole | \Phi_i \rangle|^2 \delta_{[\Delta E=0]}$ 

$$\left| \left\langle \Phi_{f} \left| \hat{e}_{q} \cdot r \right| \Phi_{i} \right\rangle \right|^{2} = \left| \left\langle \Phi_{i} \underline{c} \varepsilon \left| \hat{e}_{q} \cdot r \right| \Phi_{i} \right\rangle \right|^{2}$$

$$= ?? \left| \left\langle \varepsilon \left| \hat{e}_{q} \cdot r \right| c \right\rangle \right|^{2}$$

Single electron (excitation) approximation:  $I_{XAS} = |\langle \phi_{empty} | dipole | \phi_{core} \rangle|^2 \rho$ 

#### **XAS: multiplet effects**





#### **XAS: multiplet effects**



- DFT + projection to cluster multiplet (Haverkort, Uozumi)
- Restricted-Active-Space (Odelius, Broer, Kuhn, Neese)
- ab-initio multiplets [DFT+CI] (Ikeno, Uldry)
- extended BSE (Rehr, Shirley, Joly, Laskowski)

#### **XAS: multiplet effects**



Charge Transfer Multiplet program XAS, EELS, Photoemission, Auger, XES, Resonant PES, RIXS

> ATOMIC PHYSICS ↓ GROUP THEORY ↓ MODEL HAMILTONIANS

#### CTM4XAS (semi-empirical)

| CTM4XAS 5.2<br>Calculate Plot Fit Bundle Repo                                                                                                                                  | rt Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Configuration and spectroscopy     Electronic Ni2+     Initial state 2P06 3D08     Final state 2P05 3D09     Initial state     Final state     Slater integral 1.0 1.0 1.0 1.0 | XAS       XPS       XES       RIXS <ul> <li>2p</li> <li>2p</li> <li>3p</li> <li>3p</li></ul> | Plotting<br>Spectrum XAS  I I X<br>Lorentzian 0.2 0.4<br>Split 800                                                                 |
| Crystal field parameters (eV)<br>Symmetry Oh<br>Initial state Final state<br>10 Dq 0.0 0.0<br>Dt 0 0<br>Ds 0 0                                                                 | Core Valence<br>- Charge transfer parameters (eV)<br>CT 2.0 T(eg)<br>Delta 0 2.0 T(eg)<br>Udd 0 1.0 T(t2g)<br>Upd 0 1.0 T(t2g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gaussian 0.2<br>broadening 0.2<br>Temperature, K 0<br>Energy range (eV) 0 - 1000<br>Suppress sticks<br>Normalize<br>Auto Plot Plot |
| Ready                                                                                                                                                                          | Clean up Autoname Run Bundle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plot 🕅 Batch 📄 Fit                                                                                                                 |

## Atomic Multiplet Theory $H\Psi=E\Psi$





- Kinetic Energy
- Nuclear Energy
- Electron-electron interaction
- Spin-orbit coupling

## Atomic Multiplet Theory $H\Psi=E\Psi$



# $H = \sum_{N} \sum_{i=1}^{p_i^2} + \sum_{N} \sum_{i=1}^{-Ze^2} + \sum_{i=1}^{N} \frac{e^2}{r_{ij}} + \sum_{N} \zeta(r_i) l_i \cdot s_i$

- Kinetic Energy Nuclear Energy
- Electron-electron interaction
- Spin-orbit coupling

#### **Atomic Multiplet Theory**

$$\left< \frac{2S+1}{r_{12}} L_J \left| \frac{e^2}{r_{12}} \right|^{2S+1} L_J \right> = \sum_k f_k F^k$$

**Electron-electron interactions of Valence States** 

$$H_{ATOM} = \sum_{N} \zeta(r_i) \, l_i \cdot s_i$$

Valence Spin-orbit coupling

#### **CTM4XAS version 5.2**

| Configura                                                 | tion and a                                                   | nectroscony                       | port melp                                                        |                                                                                                                                                                                                        | Platting                                                                                                                                                                                                               |
|-----------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elect<br>configur<br>Initial<br>Final<br>Initial<br>Final | tronic<br>ration<br>state 2PC<br>state 2PC<br>state<br>state | Ni2+                              | XAS XPS<br>2p 2p<br>3p 3p<br>4p 1s<br>3d 2s<br>4d 3s<br>5d<br>1s | XES RIXS<br>1s2p 2p3d<br>1s3p 3p3d<br>1s2p<br>1s3p<br>1s3p                                                                                                                                             | Spectrum XAS • i X                                                                                                                                                                                                     |
| Slater integ                                              | gral 1.0                                                     | 1.0 1                             | .0 SO coup                                                       | ing 1.0 1.0                                                                                                                                                                                            | broadening 0.2 0.4                                                                                                                                                                                                     |
| Crystal fie                                               | Fdc                                                          | I Fpd G<br>ters (eV)——            | pd Charge transf                                                 | %) Core Valence<br>er parameters (eV)-                                                                                                                                                                 | e Gaussian 0.2                                                                                                                                                                                                         |
| Crystal fie<br>Symmetry                                   | Fdc<br>eld parame<br>/ Oh                                    | ters (eV)                         | Charge transf                                                    | %)<br>Core Valence<br>er parameters (eV)-<br>2.0 T(eg)                                                                                                                                                 | e Gaussian 0.2<br>broadening 0.2                                                                                                                                                                                       |
| Crystal fie<br>Symmetry<br>10 Da                          | Fdc<br>eld parame<br>/ Oh<br>Initial state                   | ters (eV)                         | Charge transf                                                    | %) Core Valence<br>er parameters (eV) –<br>2.0 T(eg)<br>2.0 T(eg)                                                                                                                                      | e Split 800<br>Gaussian 0.2<br>broadening 0.2<br>Temperature, K 0<br>Energy range (eV) 0 - 1000                                                                                                                        |
| Crystal fie<br>Symmetry<br>10 Dq<br>Dt                    | Fdc<br>eld parame<br>/ Oh<br>Initial state<br>0.0            | Fpd G<br>ters (eV)<br>Final state | Charge transf                                                    | %) Core Valence<br>er parameters (eV) -<br>2.0 T(eg)<br>2.0 T(eg)<br>1.0 T(t2g)                                                                                                                        | e Gaussian 0.2<br>broadening 0.2<br>Temperature, K 0<br>Energy range (eV) 0 - 1000<br>✓ Suppress sticks<br>✓ Stack                                                                                                     |
| Crystal fie<br>Symmetry<br>10 Dq<br>Dt<br>Ds              | Fdc<br>eld parame<br>/ Oh<br>Initial state<br>0.0            | Fpd G<br>ters (eV)<br>Final state | Charge transf                                                    | %)         Core         Valence           er parameters (eV) -         2.0         T(eg)           2.0         T(eg)         2.0         T(eg)           1.0         T(t2g)         1.0         T(t2g) | <ul> <li>Split 800</li> <li>Gaussian 0.2</li> <li>Temperature, K</li> <li>Temperature, K</li> <li>Energy range (eV)</li> <li>Suppress sticks</li> <li>Suppress sticks</li> <li>Normalize</li> <li>Auto Plot</li> </ul> |

#### **Atomic Multiplet Theory**

 $\left\langle {}^{2S+1}L_J \left| \frac{e^2}{r_{12}} \right|^{2S+1}L_J \right\rangle = \sum_k f_k F^k + \sum_k g_k G^k$ 

#### Core Valence Overlap



Core Spin-orbit coupling

- Term symbols with maximum spin S are lowest in energy,
- Among these terms:
- Term symbols with maximum L are lowest in energy
- In the presence of spin-orbit coupling, the lowest term has
- J = |L-S| if the shell is less than half full
- J = L+S if the shell is more than half full

**max** S > max L > max J (if more than half full)

What is the Hund's rule ground states for 3d<sup>2</sup>?

| 2 1 | 1 1 | 0 1 | -1 个 | -2 1 |
|-----|-----|-----|------|------|
| 2↓  | 1 ↓ | 0 ↓ | -1 🗸 | -2 🗸 |

**max** S > max L > max J (if more than half full)

What is the Hund's rule ground states for 3d<sup>2</sup>?

L=3, S=1

J=2 Term symbol =  ${}^{3}F_{2}$ 

**max** S > max L > max J (if more than half full)

What is the Hund's rule ground states for 3d<sup>2</sup>?

$$f_k = (2l_1 + 1)(2l_2 + 1)(-1)^L \begin{pmatrix} l_1 & k & l_1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_2 & k & l_2 \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} l_1 & l_2 & L \\ l_2 & l_1 & k \end{cases}$$

See the slides EXTRA Slater Integrals for more information

What is the Hund's rule ground states for 3d<sup>2</sup>?

1

**Charge Transfer Multiplet program** 

Used for the analysis of XAS, EELS,

Photoemission, Auger, XES,

## ATOMIC PHYSICS ↓ GROUP THEORY ↓ MODEL HAMILTONIANS

#### **Crystal Field Effects**



### **Crystal Field Effects: Tanabe-Sugano**









**Dipole & Quadrupole** 



Hamiltonian (atomic, 10Dq, Ds, Dt)
## Effect of 10Dq on XAS:3d<sup>0</sup>



# **Comparison with Experiment**









**Charge Transfer Multiplet program** 

Used for the analysis of XAS, EELS,

Photoemission, Auger, XES,

# ATOMIC PHYSICS ↓ GROUP THEORY ↓ MODEL HAMILTONIANS

# **Charge Transfer Effects**

#### 

Ground state of a transition metal system 3d<sup>N</sup> at every site

**Charge fluctations** 

# **Charge Transfer Effects**



**Charge Transfer Effects** 



# **Charge Transfer Effects in XAS**



# **Charge Transfer Effects**

# MnO: Ground state: $3d^5 + 3d^6L$ Energy of $3d^6L$ : Charge transfer energy $\Delta$





# Charge transfer effects in XAS and XPS

- Transition metal oxide: Ground state: 3d<sup>5</sup> + 3d<sup>6</sup>L
- Energy of  $3d^6L$ : Charge transfer energy  $\Delta$



# X-ray Absorption Spectroscopy

NiO



Spectral shape:(1) Multiplet effects(2) Charge Transfer



#### **Charge Transfer effects**



Chem. Phys. Lett. 297, 321 (1998)

#### LMCT and MLCT: $\pi$ - bonding

Fe<sup>III</sup>: Ground state: 3d<sup>5</sup> + 3d<sup>6</sup>



with Ed Solomon (Stanford) JACS 125, 12894 (2003), JACS 128, 10442 (2006), JACS 129, 113 (2007)

#### **LMCT** and MLCT: $\pi$ - bonding

Fe<sup>III</sup>: Ground state:  $3d^5 + 3d^6L + 3d^4L$ 



with Ed Solomon (Stanford) JACS 125, 12894 (2003), JACS 128, 10442 (2006), JACS 129, 113 (2007)

#### **LMCT** and MLCT: $\pi$ - bonding



## resonant inelastic x-ray scattering

#### resonant inelastic x-ray scattering



#### resonant inelastic x-ray scattering





- Measure optical spectra with x-rays
  > in-situ, element/valence specific
- dd-transitions > electronic structure
- Magnetic excitations
- Select specific states (active sites)

#### 2p3d RIXS and magnetic excitations (NiO)



[Phys. Rev. B. 57, 14584 (1998)]

#### 2p3d RIXS of CoO

#### MCD, spin, angles

polarization, angular-dependence (in, sample, out)

<u>eV</u> 2-electron integrals crystal field charge transfer <u>meV</u> spin-orbit, magnetic distortions vibrations

#### 2p3d resonant XES of Co-carboxylates



van Schooneveld et al., Angew. Chem. 52, 1170 (2012)

#### 2p3d RIXS of CoO



#### 2p3d RIXS of CoO



### Select specific states in 2p3d RIXS (Fe<sub>3</sub>O<sub>4</sub>)



spin-orbit + exchange

[Huang et al. arXiv:1512.07957]

### Select specific states in 2p3d RIXS (Fe<sub>3</sub>O<sub>4</sub>)



spin-orbit + exchange

[Huang et al. arXiv:1512.07957]





101

[van Schooneveld, J. Phys. Chem. Lett 4, 1161 (20al B) chooneveld et al., submitted









a



Ligated-metal surface



Oxidized ligatedmetal surface



Cobalt metal: no Raman



Cobalt cation - ligand : low energy d-d features

Oxygen anion

Cobalt oxide : d-d features

#### Removing the silent majority

