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Penetrates Earth's v | “ [ Y N
Atmosphere?

Radiation Type Radio Microwave Infrared 1'«."isibh‘ee Ultraviolet X-ray Gamma ray
Wavelength (m) 10 107° 0.5%x10°° 08 010 o-12
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Buildings Humans  Butterflies Needle Point Protozoans Molecules Atoms  Atomic Nuclei

Approximate Scale
of Wavelength

Frequency (Hz)

10

Temperature of
objects at which
this radiation is the
most intense
wavelength emitted

)

1K 100 K 10,000 K 10,000,000 K
=272 °C =173 °C 9,727 °C ~10,000,000 °C



Spectral range covered by
Synchrotron Radiation!
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« Synchrotron radiation is
electromagnetic radiation emitted
when charged particles are radially
accelerated (moved on a circular
path).

» o
Magnetic
Electrons circulating Field
in a storage ring

Beam
Collimator

Synchrotron Radiation




HOW OLD IS SYNCHROTRON
RADIATION?

Natural synchrotron radiation
from charged particles spiraling
around magnetic-field lines in
space Is as old as the stars, for
example the light we see from
the Crab Nebula.

HOW OLD IS USABLE SYNCHROTRON RADIATION?

Short-wavelength synchrotron radiation generated by relativistic electrons
In circular accelerators is only a half-century old.

The first observation, literally since it was visible light that was seen, came
at the General Electric Research Laboratory in Schenectady, New York,
on April 24, 1947. In the 60 years since, synchrotron radiation has become
a premier research tool for the study of matter in all its varied
manifestations, as facilities around the world constantly evolved to provide
this light in ever more useful forms.



X-RAY BACKGROUND

From the time of their discovery in 1895, both scientists
and society have recognized the exceptional importance
of X rays, beginning with the awarding of the very first
Nobel Prize in Physics in 1901 to Rontgen. By the time
synchrotron radiation was observed almost a half-
century later, the scientific use of x rays was well

- established.

B X-rays were discovered (accidentally) in 1895 by Wilhelm
Konrad Roentgen.

B Roentgen won the first Nobel Prize in 1901 “for the discovery
with which his name is linked for all time: the... so-called
Roentgen rays, as he himself called them, X-rays...”

Picture by Réntgen (1895)



Some milestones in X-ray research:

—1909: Barkla and Sadler discover characteristic x-ray
radiation (1917 Nobel Prize to Barkla)

—1912: von Laue, Friedrich, and Knipping observe x-ray
diffraction (1914 Nobel Prize to von Laue)

—1913: Bragg, father and son, build an x-ray spectrometer
(1915 Nobel Prize)

—>1916: Siegbahn and Stenstrom observe emission
satellites (1924 Nobel Prize to Siegbahn)

—>1922: Meitner discovers Auger electrons

—1924: Lindh and Lundquist resolve chemical shifts



DISCOVERY OF SYNCHROTRON RADIATION

In 1945, the synchrotron was proposed as the latest accelerator for high-energy
physics, designed to push particles, in this case electrons, to higher energies
than could a cyclotron, the particle accelerator of the day. An accelerator takes
stationary charged particles, such as electrons, and drives them to velocities
near the speed of light.

The General Electric (GE) Laboratory in Schenectady built the world's second
synchrotron, and it was with this machine in 1947 that synchrotron radiation
was first observed. Radiation by orbiting electrons in synchrotrons was
predicted by, among others, John Blewett, then a physicist for GE who went on
to become one of Brookhaven's most influential accelerator physicists.

For high-energy physicists performing experiments at an electron accelerator,
synchrotron radiation is a nuisance which causes a loss of particle energy. But
condensed-matter physicists realized that this was exactly what was needed to
Investigate electrons surrounding the atomic nucleus and the position of atoms

In molecules.


http://www.bnl.gov/bnlweb/history/focusing.html#blewett




A synchrotron (sometimes called a synchro-cyclotron) is a circular
accelerator which has an electromagnetic resonant cavity (or
perhaps a few placed at regular intervals around the ring) to

accelerate the particles.

As the particles increase in energy, the strength of the magnetic field

that is used to steer them must be changed with each turn to keep the

particles moving in the same ring. The change in magnetic field must

be carefully synchronized to the change in energy or the beam will be
lost. Hence the name "synchrotron".


http://www.fnal.gov/pub/accel_tour.html
http://www.fnal.gov/pub/java/java_accel.html

Storage Ring

A storage ring is the same thing as a synchrotron,
except that it is designed just to keep the particles
circulating at a constant energy for as long as
possible, not to increase their energy any further.
However, the particles must still pass through at
least one accelerating cavity each time they circle
the ring, just to compensate for the energy they lose
to synchrotron radiation.

Beamline Electrons are generated and accelerated in
y

a LINAC, further accelerated to the
i iy required energy in @ BOOSTER and injected
= and stored in the STORAGE RING

Beamline

Beamline




Storage Rings

First generation: parasitic operation
Second generation: dedicated operation

Third generation: undulators and
wigglers
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Insertion Devices

undulator period

~ I

electron beam

v

magnet poles

nsertion devices (ID) are periodic arrays of magnetic
poles with alternating field directions installed, in the
straight sections of storage rings that force the

particles to oscillate passing through the device.




Wigglers

A wiggler is a multipole magnet (MPW) made up of a periodic series of magnets. Electrons are forced to follow a
sinusoidal trajectory with a smaller local radius of curvature with respect to the one of the dipole-bending magnet,
because ina wiggler, a magnetic field higher than in a bending magnet can be used.
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Wiggler — Incoherent Superposition




Undulators

Inan undulator K # 1, so the wiggling angle o is smaller than, or close to, the photon natural
emission angle 1/y and in this case constructive interference, at specific wavelengths occurs
between the radiation emitted by electrons at different poles along the trajectory.

TN~

Undulator — Coherent Interference




Bending magnet
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Wiggler radiation

Undulator radiation
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Continuum source from IR to X-rays
(tunability) which covers from microwaves to

hard X-rays: the user can select the
wavelength required for experiment-
continuous (Bending Magnet/Wiggler) - quasi-
monochromatic (Undulator)

Source in a clean UHV environment

Very high flux and brightness (with
undulators) highly collimated photon beams

generated by a small divergence and small
size sources .

Highly Polarized

Pulsed time structure - pulsed length down
to tens of picoseconds allows the resolution

of processes on the same time scale

High stability (submicron source stability)




The Physics of Synchrotron Radiation
By Albert Hofmann

Cambridge University Press, 2004

An Introduction to Synchrotron Radiation: Techniques and Applications
By Philip Willmott
J. Wiley, 2011

Soft X-Rays and Extreme Ultraviolet Radiation:
Principles and Applications

By David Attwood
Cambridge University Press, 2007

Synchrotron Radiation
Basics, Methods and Applications

Eds Settimio Mobilio, Federico Boscherini, Carlo Meneghini
Springer, 2015



Synchrotron radiation applications
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TED PARTICLE
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Electron




lectron Spectroscopy (PES)

/el electron spectroscopy
e band photoemission
ant photoemission
oelectron Diffraction

ray Absorption Spectroscopy (XAS)
dge X-ray Absorption Spectroscopy (NEXAFS)
Jed X-ray Absorption Fine Structure (EXAFS)
lagnetic Circular Dichroism (XMCD)

mission Spectroscopy (XES)

-ray Scattering (RIXS)




Selected examples:

NEXAFS

Core-level spectroscopy

Resonant photoemission

Ultrafast dynamics




NEXAFS (Near-Edge X-ray Absorption
Fine Structure)

Near Edge X-Ray Absorption Fine Structure, NEXAFS,
spectroscopy refers to the absorption fine structure close
todan absorption edge, about 30 eV around the actual
edge.

This region usually shows the largest variations in the X-ray
absorption coefficient and is often dominated by intense,
narrow resonances.

NEXAFS is also called X-ray Absorption Near Edge
Structure, XANES. Today, the term NEXAFS is typically
used for soft x-ray absorption spectra and XANES for
hard x-ray spectra.
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e Search Light Effect

Benzene Molecular Orbitals Lying-down benzene on Ag (110)
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re-level spectros

Si surfaces and chemical shift

Ethyl trifluoroacetate
C1s XPS

Travnikova ef &/, J.El Spec. 2012

Binding Energy Shift (eV)




Electrons interact strongly
Surface Sensitivity
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Si(100)-2x1
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STM image of Si(111)-7x7
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X-ray Absorption
Spectroscopy of N,0
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Decay Processes In
niEsl Core-Excited N20

10%20230%40° 502602 1747022743 19t

M N Piancastelli et al., J.Phys.B: At.Mol.Opt.Phys. 40, 3357(2007)
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Possible mechanisms
of nuclear dynamics:
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= I Nuclear Dynamics of
fNitl core-excited systems
Ultrafast dissociation

VOLUME 56, NUMBER 18 PHYSICAL REVIEW LETTERS 5 MAY 1986

Atomic Autoionization Following Very Fast Dissociation of Core-Excited HBr

P. Morin and I. Nenner
Laboratoire pour I Utilisation du Rayonnement Electromagnetique, Université de Paris-Sud, 91405 Orsay Cédex, France, and
Département de Physico-Chimie, Commissariat a I’Energie Atomique, Centre d’Etudes Nucleaires de Saclay,
91191 Gif sur Yvette Cedex, France
(Received 28 February 1986)

Photoelectron spectroscopy excited by monochromatic synchrotron radiation (68—80 eV range) is
used to study the Br 34 excitation in HBr. The transition to an antibonding orbital is shown to pro-
duce a resonant state whose repulsive nature has been observed directly. A two-step relaxation
process involving a fast neutral dissociation followed by the autoionization of the excited fragment
has been shown for the first time.
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0.Bjorneholm, M.Bassler, R.
on, S.L.Sorensen and S.Svensson, Che
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Potential energy curve of HCI
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https://www.elettra.trieste.it/XIIISILS/index.php
’n=Main.Lessons

http://talkminer.com/viewtalk.jsp?videoid=YDIY
Hw09Qrl&g=#.VgnnWeZG8QM

http://www-ssrl.slac.stanford.edu/nexafs.html
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