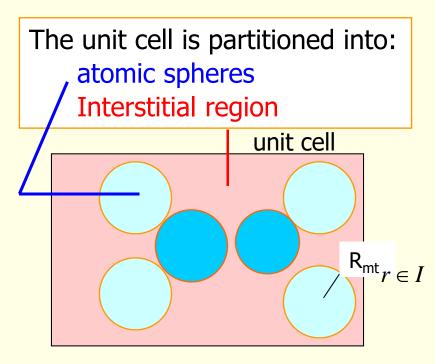
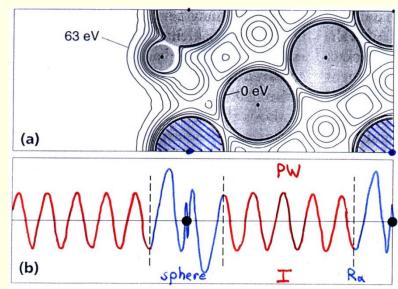
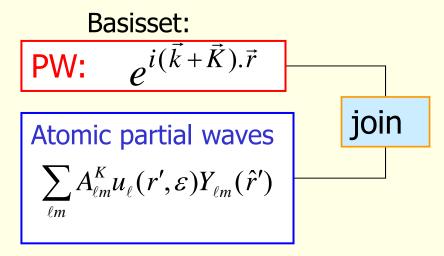


The FP-LAPW and APW+lo bandstructure methods as implemented in WIEN2k


Peter Blaha

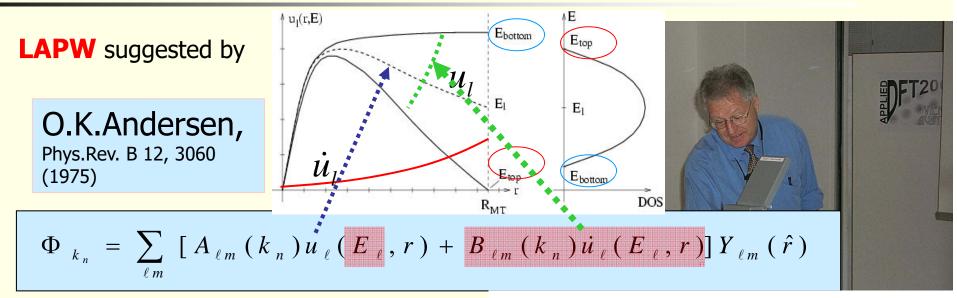

Institute of Materials Chemistry TU Wien

(You can find this pdf at \$WIENROOT/wien2k.pdf)



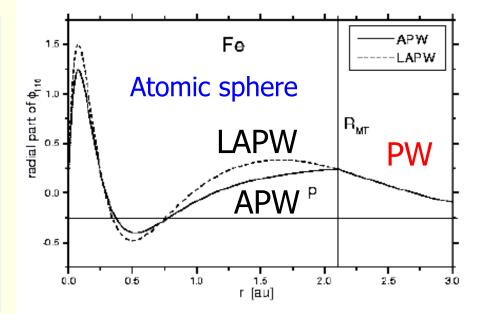
energy dependency !

• APW (J.C.Slater 1937)


- Non-linear eigenvalue problem
- Computationally very demanding
- LAPW (O.K.Andersen 1975)
 - Generalized eigenvalue problem
 - Full-potential (A. Freeman et al.)
- Local orbitals (D.J.Singh 1991)
 - treatment of semi-core states (avoids ghostbands)
- APW+lo (E.Sjöstedt, L.Nordstörm, D.J.Singh 2000)
 - Efficience of APW + convenience of LAPW
 - Basis for

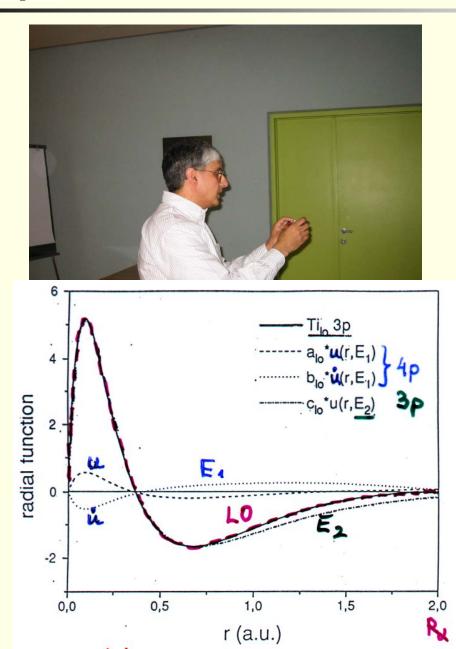
K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.**147**, 71-76 (2002)

Linearization of energy dependence



expand u_l at fixed energy E_l and add $\dot{u}_l = \partial u_l / \partial \varepsilon$

 A_{lm}^{k} , B_{lm}^{k} : join PWs in value and slope


→basis flexible enough for single diagonalization

→additional constraint requires more PWs than APW

$$\Phi_{LO} = [A_{\ell m} u_{\ell}^{E_{1}} + B_{\ell m} \dot{u}_{\ell}^{E_{1}} + C_{\ell m} u_{\ell}^{E_{2}}]Y_{\ell m}(\hat{r})$$

LO

- is confined to an atomic sphere
- has zero value and slope at R
- can treat two principal QN n for each azimuthal QN l (3p and 4p)
- corresponding states are strictly orthogonal (no "ghostbands")
- tail of semi-core states can be represented by plane waves
- only slight increase of basis set (matrix size)

D.J.Singh, Phys.Rev. B 43 6388 (1991)

• LAPW (for higher i) + LO $\Phi_{k_n} = \sum_{\ell m} [A_{\ell m}(k_n)u_{\ell}(E_{\ell}, r) + B_{\ell m}(k_n)\dot{u}_{\ell}(E_{\ell}, r)]Y_{\ell m}(\hat{r})$ • APW (for "chemical i) + lo $\Phi_{LO} = [A_{\ell m}u_{\ell}^{E_1} + B_{\ell m}\dot{u}_{\ell}^{E_1} + C_{\ell m}u_{\ell}^{E_2}]Y_{\ell m}(\hat{r})$ $\Phi_{LO} = [A_{\ell m}u_{\ell}^{E_1} + B_{\ell m}\dot{u}_{\ell}^{E_1}]Y_{\ell m}(\hat{r})$

Plane Waves (PWs)

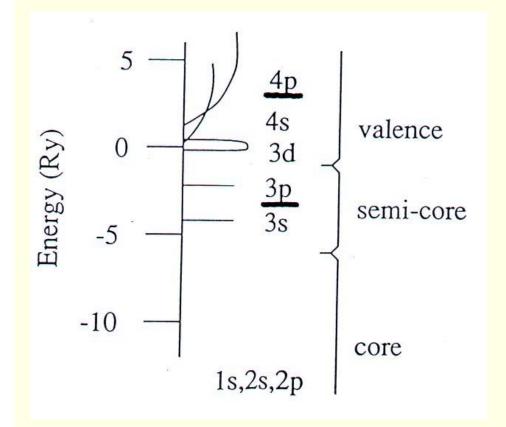
$$e^{i(\vec{k}+\vec{K}_n).\vec{r}}$$

match at sphere boundary (not stored)

- LAPW: value and slope $A_{\ell m}(k_n), B_{\ell m}(k_n)$
- APW: value

 $egin{aligned} &A_{\ell m}(k_n), B_{\ell m}(k_n)\ &A_{\ell m}(k_n) \end{aligned}$

$$\Psi(r) = \sum_{k_n}^{k_{max}} c_{k_n} \Phi_{k_n}$$


LO and lo: value (+slope) zero, normalization
 Variational coefficients: C_{kn}, C_{LO}, C_{lo}

Core, semi-core and valence states

For example: Ti

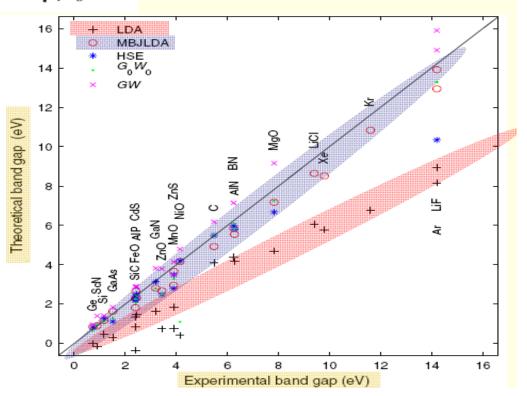
Valences states

• Scalar relativistic wavefunctions with large and small component

Semi-core states

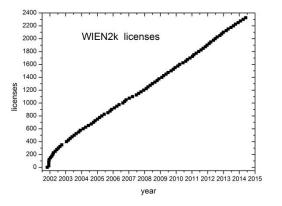
- Principal QN one less than valence (e.g.in Ti 3p and 4p)
- not completely confined inside sphere
- Treated by LOs
- Core states (recalculated in scf)
 - Reside completely inside sphere
 - Fully relativistic radial wf. (radial Dirac-equation)
 - Spherical symmetric

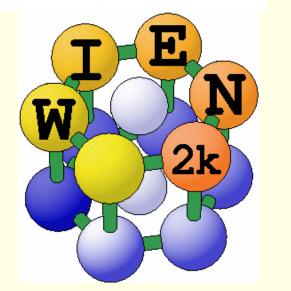
- various LDA, GGA, meta-GGA and DFT-D3 functionals
- interface to LIBXC (public domain XC-library)
- TB-mBJ (a XC-potential for band gaps)
- LDA+U
- "onsite" hybrid-DFT for "correlated electrons" (EECE)
 - as cheap as LDA+U
- hybrid functionals
 - fairly expensive
- additional packages: (very expensive !)
 - GW calculations (GAP 2.0 code by Hong Jiang)
 - BSE calculations (obtainable on request)



Becke-Johnson potential (J. Chem. Phys. 124, 221101 (2006))
 local potential designed to reproduce non-local OEP potentials in atoms modified Becke-Johnson potential

$$v_{x,\sigma}^{\text{MBJ}}(\mathbf{r}) = c v_{x,\sigma}^{\text{BR}}(\mathbf{r}) + (3c-2) \frac{1}{\pi} \sqrt{\frac{5}{12}} \sqrt{\frac{2t_{\sigma}(\mathbf{r})}{\rho_{\sigma}(\mathbf{r})}},$$


$$c = \alpha + \beta \left(\frac{1}{V_{\text{cell}}} \int_{\text{cell}} \frac{|\nabla \rho(\mathbf{r}')|}{\rho(\mathbf{r}')} d^3 r' \right)^{1/2}$$


- c depends on the density properties of a material
- + gaps of "GW" quality
- + good for correlated TM-oxides
- NO energy (only V)

F.Tran P.Blaha

PRL 102, 226401 (2009)

WIEN97: ~500 users WIEN2k: ~2600 users

WIEN2k software package

An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties

> Peter Blaha Karlheinz Schwarz Georg Madsen Dieter Kvasnicka Joachim Luitz

November 2001 Vienna, AUSTRIA Vienna University of Technology

http://www.wien2k.at

23rd WIEN2k-workshop: 4.-7.June 2016 McMasters University, Hamilton, Canada

- Energy bands
 - classification of irreducible representations
 - ´character-plot´ (emphasize a certain band-character)
- Density of states
 - including partial DOS with I and m- character (eg. p_x , p_y , p_z)
- Electron density, potential
 - total-, valence-, difference-, spin-densities, ρ of selected states
 - 1-D, 2D- and 3D-plots (Xcrysden)
 - X-ray structure factors
 - Bader 's atom-in-molecule analysis, critical-points, atomic basins and charges ($\nabla \rho . \vec{n} = 0$)
 - spin+orbital magnetic moments (spin-orbit / LDA+U)
- Hyperfine parameters
 - hyperfine fields (contact + dipolar + orbital contribution)
 - Isomer shift
 - Electric field gradients (quadrupole splittings)
 - NMR Chemical shifts , Knight shifts

Total energy and forces

- optimization of internal coordinates, (MD, BROYDEN)
- cell parameter only via E_{tot} (no stress tensor)
- elastic constants for cubic, hexagonal, and tetragonal cells
- Phonons via supercells
 - interface to PHONON (K.Parlinski) bands, DOS, thermodynamics, neutrons
 - interface to PHONOPY (A. Togo)
 - http://www.wien2k.at/reg_user/unsupported

Spectroscopy

- core level shifts
- X-ray emission, absorption, electron-energy-loss (with core holes)
 - core-valence/conduction bands including matrix elements and angular dep.
- optical properties (dielectric function in RPA approximation, JDOS including momentum matrix elements and Kramers-Kronig)
- fermi surface: 2D, 3D (using XcrysDen)

- advanced topics and developments
 - non-collinear magnetism (available on request: www.wien2k.at)
 - transport properties (Fermi velocities, Seebeck, conductivity, thermoelectrics, ..): G. Madsen's BotzTrap code
 (see http://www.wien2k.at/reg_user/unsupported)
 - Berry phases (BerryPI by O.Rubel etal. (http://www.wien2k.at/reg_user/unsupported)
 - Wannier functions (via Wannier90)
 - Bethe-Salpeter equation (for excitons, R.Laskowski)
 - GW (M.Scheffler, Hong Jiang)

- WIEN2k consists of many independent F90 programs, linked together via C-shell scripts and executed via x PROGRAM.
- Each "case" runs in his own directory './case
- The "master input" is called
- Initialize a calculation:
- Run scf-cycle:

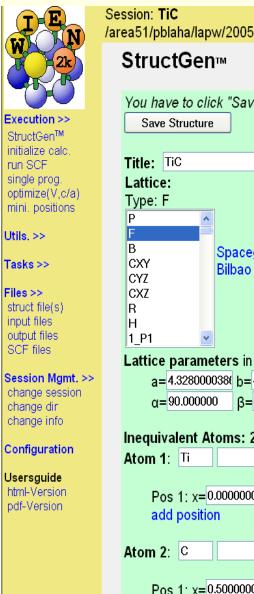
case.struct

init_lapw

- run_lapw (runsp_lapw)
- You can run WIEN2k using any www-browser and the w2web interface, but also at the command line in an xterm.
- Input/output/scf files have endings as the corresponding programs:
 - case.output1...lapw1; case.in2...lapw2; case.scf0...lapw0
- Inputs are generated using STRUCTGEN(w2web, makestruct, cif2struct,xyz2struct) and init_lapw

- Based on www
 - WIEN2k can be managed remotely via w2web
- Important steps:
 - start w2web on all your hosts
 - login to the desired host (ssh)
 - w2web (at first startup you will be asked for username/password, port-number, (master-)hostname. creates ~/.w2web directory)
 - use your browser and connect to the (master) host:portnumber
 - firefox http://fp98.zserv:10000
 - create a new session on the desired host (or select an old one)

Welcome to w2web the fully web-enabled interface to WIEN2k Select stored session: Create new session: show only selection Session name Create on host-node CI2 master node Favalit http://jupiter:10000 Fccni (http://fp98.zserv:10000) http://homer:10000 FeF2 http://pauli.theochem.tuwien.ac.at:10000 Forsterit http://fp98.zserv.tuwien.ac.at:10000 H atom http://hal.zserv.tuwien.ac.at:10000 Hq1201 http://venus.theochem.tuwien.ac.at:10000 Hq3AsO4CI (http://hal.zserv:10000) HgAsO4CI (http://hal.zserv.tuwien.ac.at:10000) 12 MqCO3 NdNiSnD (http://jupiter:10000) NdNiSn_AF (http://jupiter:10000) NdNiSn (http://jupiter:10000) edit hosts TiC_evapaph TiC_kla (http://pauli:10000) TiN_evapaph Select



Structure generator

- spacegroup selection
- import cif or xyz file
- step by step initialization
 - symmetry detection
 - *automatic input generation*
- SCF calculations
 - Magnetism (spin-polarization)
 - Spin-orbit coupling
 - Forces (automatic geometry optimization)
- Guided Tasks
 - Energy band structure
 - DOS
 - Electron density
 - X-ray spectra
 - **Optics**

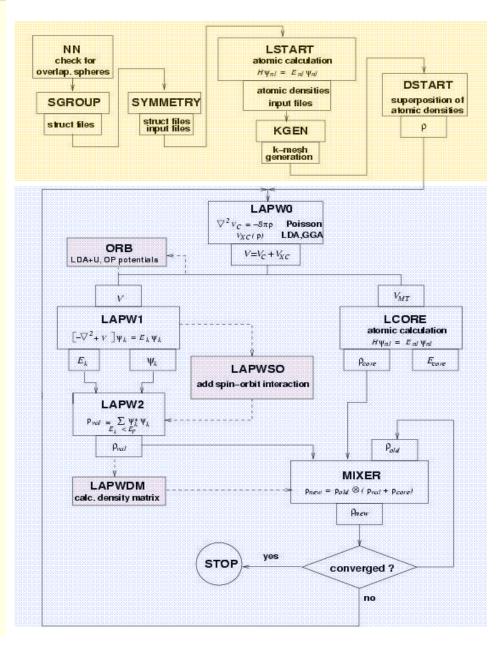
Idea and realization

þу

/area51/pblaha/lapw/2005-june/TiC

You have to click "Save Structure" for changes to take effect!
Save Structure
Title: TiC
Lattice:
Туре: F
P 🔨
B Spacegroups from
- Spacegroups nom
CYZ Bilbao Cryst Server
CXZ
R
H 1 P1 v
Lattice parameters in A
a=4.3280000386 b=4.3280000386 c=4.3280000386
$\alpha = 90.000000$ $\beta = 90.000000$ $\gamma = 90.000000$
In a multival and Adamas 2
Inequivalent Atoms: 2
Atom 1: Ti Z=22.0 RMT=2.0000 remove atom
Pos 1: x=0.00000000 y=0.00000000 z=0.00000000 remove
add position
Atom 2: C Z=6.0 RMT=1.9000 remove atom
Atom 2: C Z=6.0 RMT=1.9000 remove atom
Pos 1: x=0.50000000 v=0.50000000 z=0.50000000 remove
· · · · · · · · · · · · · · · · · · ·
add position

Program structure of WIEN2k



init_lapw

- step-by-step or batch initialization
- symmetry detection (F, I, Ccentering, inversion)
- input generation with recommended defaults
- quality (and computing time) depends on k-mesh and R.Kmax (determines #PW)

run_lapw

- scf-cycle
- optional with SO and/or LDA+U
- different convergence criteria (energy, charge, forces)
- save_lapw tic_gga_100k_rk7_vol0
 - cp case.struct and clmsum files,
 - mv case.scf file
 - rm case.broyd* files

All programs are executed via the "master" shell-script "x": x lapw2 –up –c

- This generates a "def" file: lapw2.def
 - 5,'tin.in2c', 'old', 'formatted'
 - 6, 'tin.output2up', 'unknown', 'formatted'
 - 8, 'tin.clmvalup', 'unknown', 'formatted'
 - 10, './tin.vectorup', 'unknown', 'unformatted'
- and executes: lapw2c lapw2.def
- All WIEN2k-shell scripts have long and short names:
 - x_lapw; runsp_lapw, runfsm_lapw → x; runsp; runfsm
- All scripts have a "help" switch "-h", which explains flags and options (without actually execution)
 - x -h x lapw1 -h

run_lapw [options]	(for nonmagnetic cases)			
<i>-ec 0.0001</i>	convergence of total energy (Ry)			
<i>-cc 0.0001</i>	convergence of charge distance (e ⁻)			
-fc 1.0	convergence of forces (mRy/bohr)			
-it (-it1,-it2, -noHinv)	iterative diagonalization (large speedup)			
• - <i>p</i>	parallel calculation (needs .machines file)			
■ <i>-SO</i>	add spin-orbit (only after "init_so")			
Spacegroups without inversion (use automatically lapw1c, lapw2c (case.in1c,in2c)			

case.scf: master output file, contains history of the scf-cycle

most information is stored with some "labels" (grep :label case.scf)

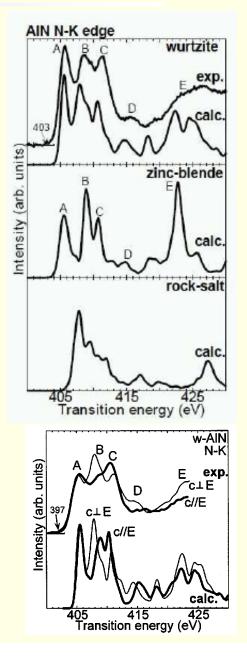
ENE :DIS :FER	:GAP :CTOOO)1 :NTC	0001	:QTL001
FOR002: 2.ATOM	19.470	0.000	0.000	19.470
• :FGL002: 2.ATOM	13.767	13.767	0.000	total forces
• :LAT :VOL :POS	XXX			

connect to the compute nodes using:

- x2go (hocXXX at rhea.cup.uni-muenchen.de)
 (or ssh -X hocXXX@rhea.cup.uni-muenchen.de)
- open at least 2 windows:
 - on the frontend: for editing and small calculations, X-window graphics
 - qrsh_hoc: here you should do all the "calculations"
- always work in \$HOME/workdir

you can find the "text-version" of the instructions (for "cut and paste") at \$WIENROOT/wien2k.txt

Exercise #1

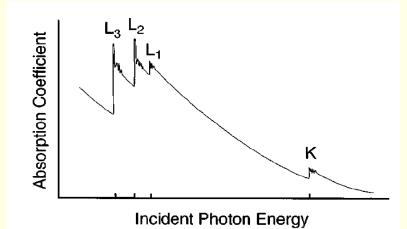


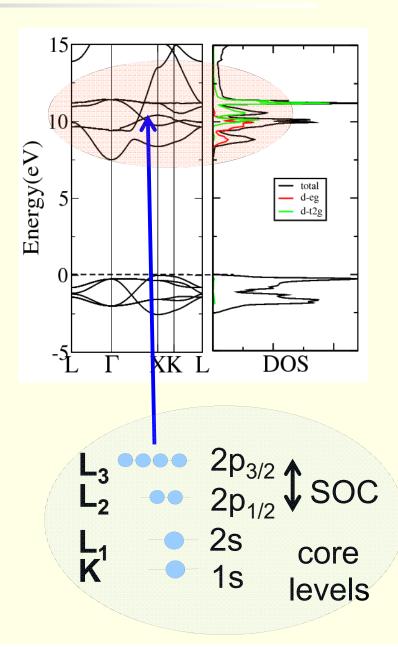
Electronic structure and N-K XAS of AIN

T. Mizoguchi, Phys. Rev. B70 (2004) 045103

Methods:

- ground state calculation
- DOS, electron density, band structure
- XAS (without core hole)
- AIN 2x2x2 supercell with N-1s core hole
- scf calculation
- XSPEC with core hole
- calculations using TB-mBJ (better gap)
- PS: most parameters in the instructions are "underconverged" to save time

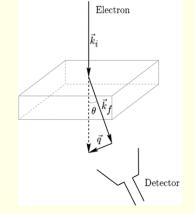




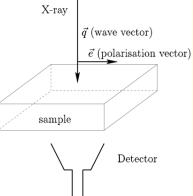
- core electrons are excited into a conduction band
- Each core shell introduces an absorption edge, (they are indexed by the principal number of a core level)

K-1s, L_1 -2s, L_2 -2p_{1/2}, L_3 -p_{3/2}

 Due to localization of the core wave function, there is a strong interaction of an excited electron with a core hole



EELS vs. XAS



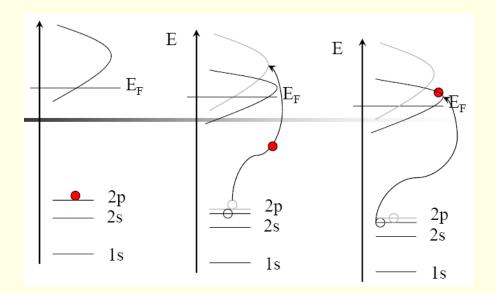
 $\frac{\partial^2 \sigma}{\partial E \partial \Omega} \propto \sum_{I,F} \left| \left\langle I \right| e^{i\vec{q} \cdot \vec{R}} \right| F \right\rangle \right|^2$

$$\frac{\partial \sigma}{\partial E} \propto \sum_{I,F} \left| \left\langle I \right| e^{i\vec{q}\cdot\vec{R}} \vec{e}\vec{R} \right| F \right\rangle^{2}$$

$$\vec{q}\vec{R} << 1 \rightarrow e^{i\vec{q}\vec{R}} = 1 + i\vec{q}\vec{R} + \frac{(\vec{q}\vec{R})^2}{2!} + \dots$$
EELS XAS
$$\frac{\partial^2 \sigma}{\partial E \partial \Omega} \propto \sum_{I,F} \left| \left\langle I \left| \vec{q}\vec{R} \right| F \right\rangle \right|^2 \qquad \qquad \frac{\partial^2 \sigma}{\partial E \partial \Omega} \propto \sum_{I,F} \left| \left\langle I \left| \vec{\varepsilon}\vec{R} \right| F \right\rangle \right|^2$$

The polarization vector in XAS plays the same role as momentum transfer in (nonrelativistic) ELNES within the dipole approximation.

core-valence spectroscopies give information on the local DOS (because of $\langle \Psi_{core} | r | \Psi_{val} \rangle$) of angular momentum character $\ell \pm 1$



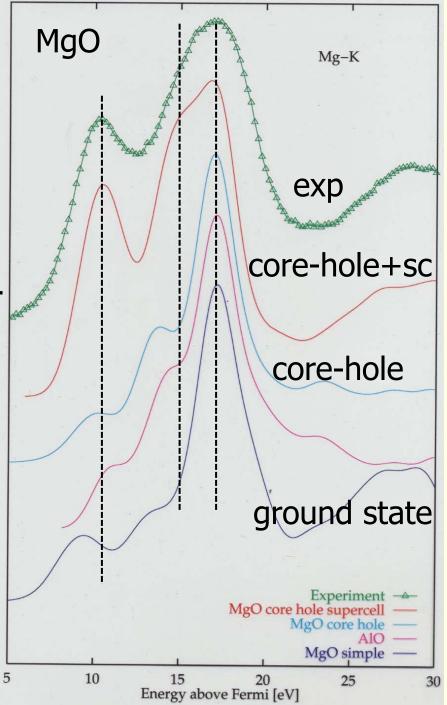
"Final state" determines the spectrum:

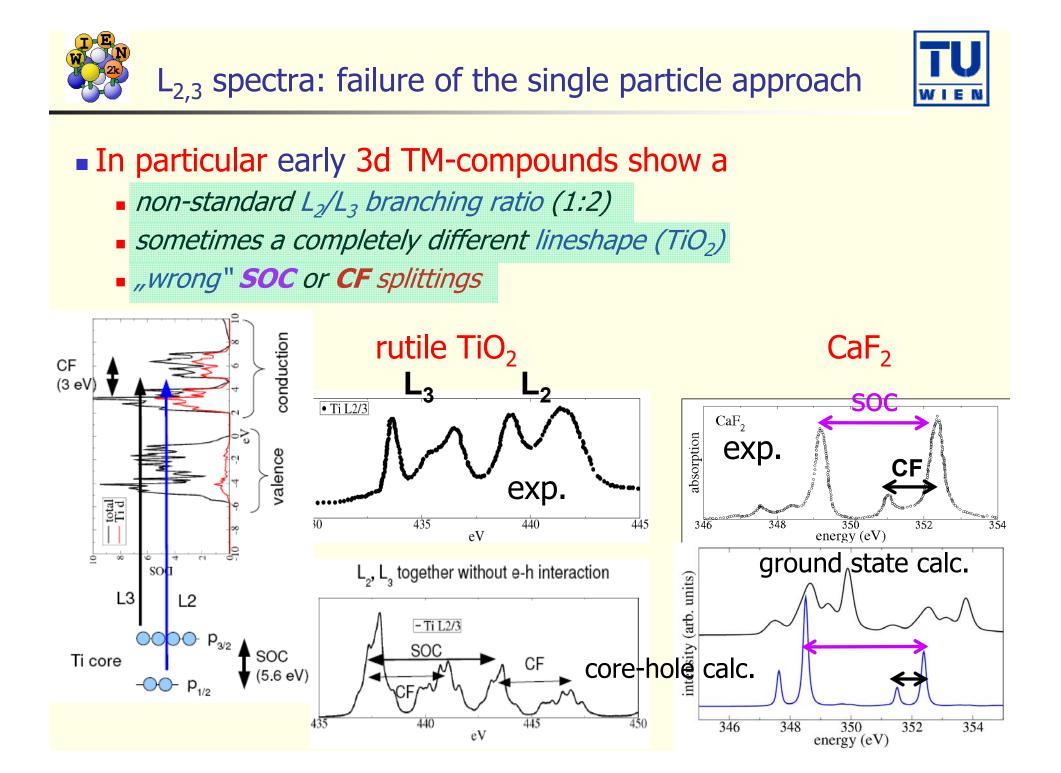
- Emission spectroscopy:
 - Final state has filled core, but valence hole. This is usually well screened, thus one "sees" the groundstate.
- Absorption spectroscopy:

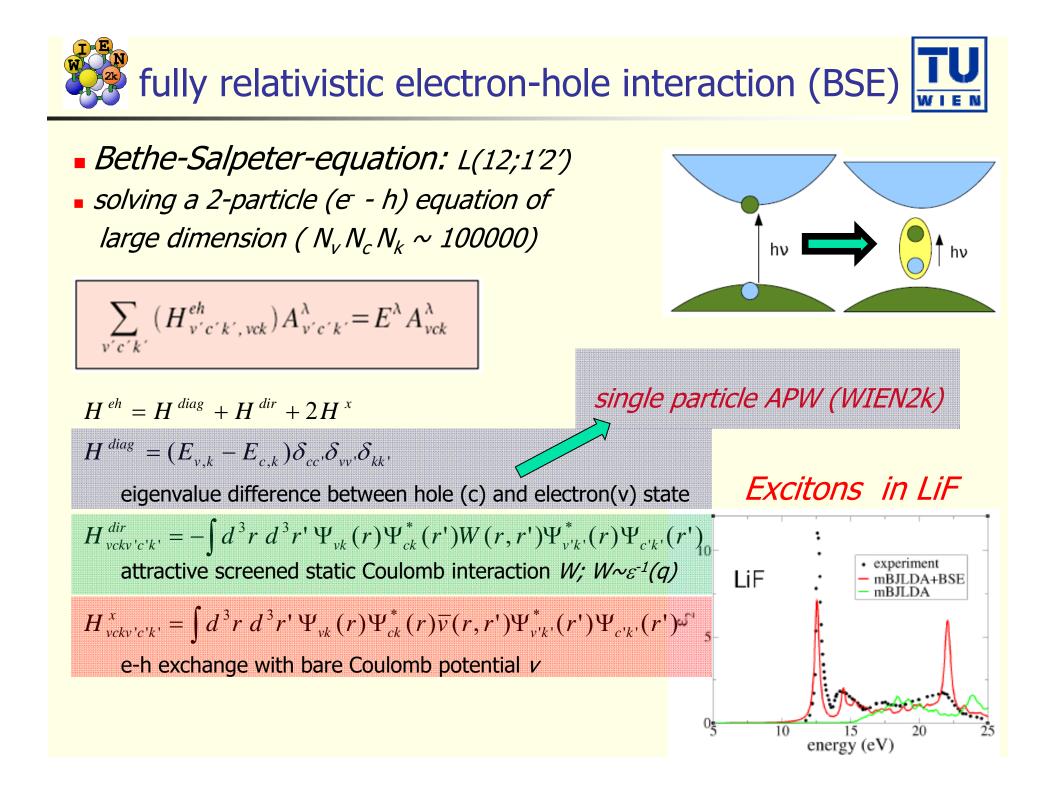
Final state has a "hole" in core state, but additional e⁻ in conduction band. Core-hole has large effect on the spectrum

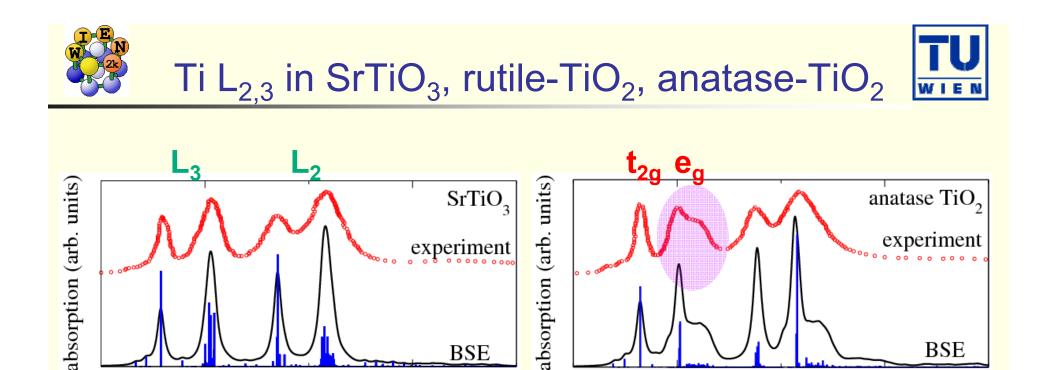
electron – hole interaction, "excitonic effects"

Core hole calc


"Final state" determines the spectrum:


Selfconsistent supercell calculations:


- "hole" in core state of one of the atoms
- add e⁻ in conduction band or background.


Static approximation:

- the scf calculation allows the conduction states to relax (adjust to the larger effective nuclear charge),
- the supercell allows for some static screening from the environment.

The experimental Ti $L_{2,3}$ edges are rather well reproduced.

465

energy (eV)

- intensity ratio L₃/L₂ (not 2:1)
- "t_{2a}/e_a" ratio (not 3:2)

460

455

- left/right shoulder in L₃-"e_a" peak of rutile/anatase
- crystal field splitting influenced by excitonic binding energy

475 460 465 470 475 455 energy (eV) absorption (arb. units) rutile TiO, experiment BSE 1 H

465

energy (eV)

470

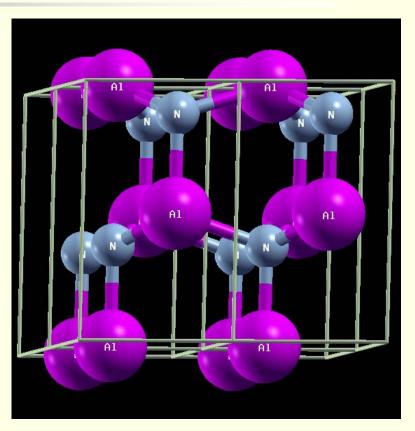
BSE

475

 $E_{bind}^{\lambda} = \sum_{k,e,h} A_{k,h,e}^{2} (\varepsilon_{e\mathbf{k}} - \varepsilon_{h\mathbf{k}} - E_{\lambda})^{460}$

BSE

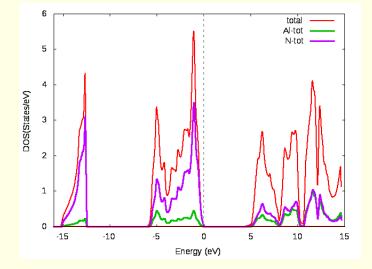
470



exercise #1: bulk w-AIN

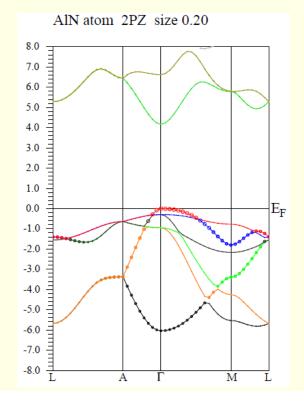
cd workdir;mkdir AlN; cd AlNmakestruct_lapw

- *SG 186 (wurzite structure)*
 - Iattice parameter: 3.111, 4.978A
 - Al(1/3,2/3,0); N (1/3,2/3,0.385)
 - no reduction of RMT
- cp init.struct AIN.struct
- xcrysden --wien_struct .
- init_lapw –b –rkmax 6 -numk 300
- in "exec" window: run_lapw
- # check convergence:
 - grep :ENE AIN.scf (:DIS :FER :GAP)
- save_lapw AIN_exp_rkm6_300k_pbe

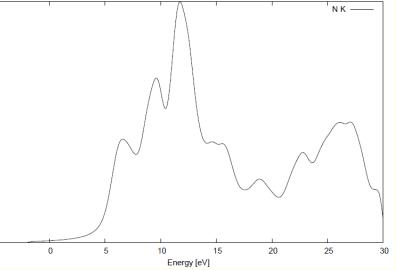


AIN: DOS

- x lapw2 -qtl
- cp \$WIENROOT/SRC_templates/template.int AlN.int
- \$EDITOR AIN.int
 - emin=-1.0; 7 cases; total,Al-tot,N-tot,Al-pz,Al-pxy,N-pz,N-pxy
- x tetra
- dosplot2
 - a) total + Al-tot + N-tot
 - b) Al-pz, Al-px+py, N-pz, N-px+py



AIN bandstructure


- xcrysden --wien_kpath .
 - click L-A-GAMMA-M-L, 50 total points, save as AlN.klist_band
- x lapw1 -band
- x lapw2 -band -qtl
- cp \$WIENROOT/SRC_templates/template.insp AlN.insp
- grep :FER AIN.scf
- \$EDITOR AIN.insp
 - insert EF, emin=-8.
 - plot N-p_z (and later p_{xy})
- x spaghetti
- gv AlN.spaghetti_ps

- \$EDITOR AlN.in1c # increase Emax to 5.0
- x lapw1
- x lapw2 -qtl
- cp \$WIENROOT/SRC_templates/case.inxs AlN.inxs
 - select N 1 s state; EMAX=30eV; broadening /2
- x initxspec
- x tetra
- x txspec
- x lorentz
- specplot_lapw

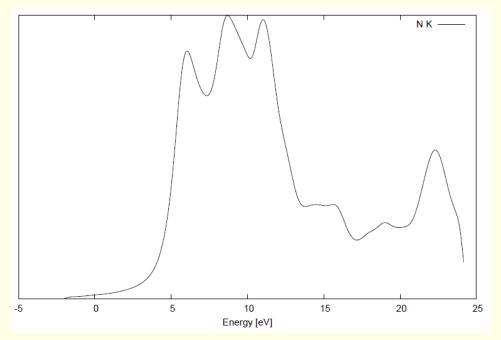
edit AlN.int and select N-p_z (p_{xy}) and repeat the steps from tetra

- copy AIN.struct into a new directory AIN_222, change into it
- x supercell
 - AlN.struct
 - 2x2x2 cells, no shift, no vacuum
- cp AIN_super.struct AIN_222.struct
- \$EDITOR AIN_222.struct
 - increase NATO by 1; split the last N into 2 non-equivalent positions, label the last N as "N 1"
- init_lapw -numk 40 -rkmax 5
- \$EDITOR AIN_222.struct (reduce last N-1s occupation to 1)
- \$EDITOR AIN_222.in2c (add one valence electron)
- SEDITOR .machines (insert 4 lines with: 1:localhost)
- run_lapw -p (in execution window)

AIN supercell

- grep :ENE AIN_222.scf
- grep :WAR AIN_222.scf
- less AIN_222.scf2

rm *.broy*


- # observe the "warnings"
- # comes from large "QTL-B" values
 - # find the reason (last N-p at 0.0 Ry)
- # check : EPH016 for proper E-parameter
- \$EDITOR AIN_222.in1c # change for last N: E-p $0.3 \rightarrow 0.0$
 - # remove charge history
- run_lapw -p (on compute node)

grep :ENE AIN_222.scf # observe lower E

- \$EDITOR AIN_222.in2c # reduce NE by 1
 x lapw2 -qtl -p
- follow the steps of the previous xspec
- compare the plots with experiments

- # go back into the AIN directory
- init_mbj_lapw
- ∎ run -i 1
- init_mbj_lapw
- run_lapw

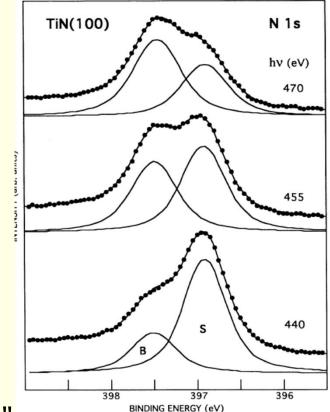
- # prepare kinetic energy density for mBJ
- save_lapw AIN_PBE # save the PBE calculation

first step of mBJ initialization

2nd step, select semiconductor param.

compare the PBE and mBJ band gaps (:GAP in the *.scf files) and experiment (6.13eV)

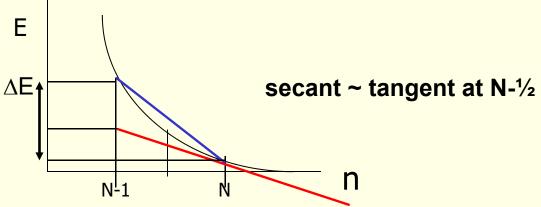
Exercise #2



Surface XPS core-level shifts of N-1s in TiN(100)

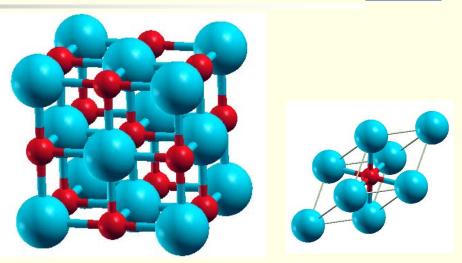
- L.I.Johansson et al., PRB 48, 14520 (1993)
- N-1s in bulk has a ~0.5 eV larger BE than at the surface

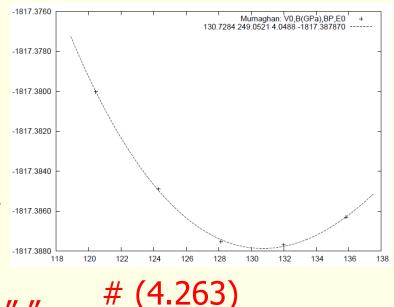
Methods:


- lattice parameter optimization of bulk
- creation of a (100) TiN surface model
- relaxation of the surface slab
 - check geometry
 - compare N-1s eigenvalues
 - analyse charge transfer at the surface
- XPS calculation using Slaters "transition state"
 - 2x2x1 supercell
 - calculations with ½ core-hole at 2 N sites

- Ionizationpotential of core-e⁻, IP = E^{tot}(N) E^{tot}(N-1)
 - gives information on charge state of the atom
- core-eigenvalues ε_i are NOT a good approximation: $\varepsilon_i = dE/dn$
 - ~10 % error, final state screening is not considered
- Slater's "transition state": core-eigenvalues ϵ_i for half occupancy

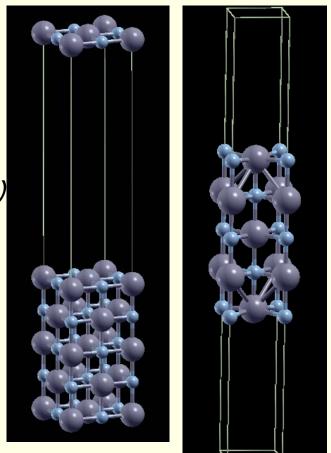
- \triangle -SCF-calculation with and without core-hole: $E^{tot}(N) E^{tot}(N-1)$
 - supercells to reduce hole-hole interaction
 - error reduced to <1%; final state screening</p>




TiN

cd workdir;mkdir TiN; cd TiN

- makestruct_lapw
 - Iattice type F (NaCl structure)
 - Iattice parameter: 4.235 A
 - Ti (0,0,0); N (0.5,0,0)
 - 3% reduction of RMT
- cp init.struct TiN.struct
- xcrysden --wien_struct .
- init_lapw –b –rkmax 6
- x optimize
 - volume opt. with -6,-3,0,3,6 %
- now change into the other "window"
 - ./optimize.job
- back in interactive window: eplot –a " "



TiN (100) surface (5 layers)

- cd ..; mkdir TiN100; cd TiN100
- cp ../TiN/TiN.struct .
- \$EDITOR TiN.struct
 - change lattice parameters to 8.0563 bohr
 - NOTE: struct file is fixed positioned (replace)
- **X Supercell** (TiN.struct; 1x1x2 cells; no shift;)
 - 30 bohr vacuum; repeat layer at z=0
- cp TiN_super.struct TiN100.struct
- xcrysden --wien_struct .
- x sgroup
- less TiN100.outputsgroup
- cp TiN100.struct_sgroup TiN100.struct # and repeat xcrysden
- init_lapw –b –numk 60 –rkmax 6

TiN(100)

- in "exec-window": run_lapw –fc 1 –min
- # analyse structural distortions and calc. BE of N-1s (from ε_i)
 - xcrysden –wien_struct .
 - grep :1S TiN100.scf
 - grep :FER TiN100.scf # (376.9 and 377.3 eV; 20 eV too small)

- # create a new directory (super); take optimized structure and generate 2x2x1 supercell; "label" a surface-N atom "N 1"
- x sgroup # regrouping of equivalent atoms
- # cp the generated struct file and initialize with 25 k and rkmax=6
- **\$EDITOR super.inc** # change occupation of labelled "N 1" atom to 1.5
- Section Section Section Section 12 # increase NE by "MULT*0.5"
- Section 3 Section 4 Sec
- # in "exec-window": run_lapw –fc 1 –min –p
- # calc. BE-N-1s (404.1 eV)
- # Repeat the scf cycle, but with a core-hole in a "bulk Natom" (with mult=1). Check the struct file which N you should change and change occupancies in super.inc and NE in case.in2) (EB=404.55 eV)